On the Eigenvalues of the Lax Operator for the Matrix-valued Akns System

نویسنده

  • MARTIN KLAUS
چکیده

We consider the eigenvalues of the matrix AKNS system and establish bounds on the location of eigenvalues and criteria for the nonexistence of eigenvalues. We also identify properties of the system which guarantee that eigenvalues cannot lie on the imaginary axis or can only lie on the imaginary axis. Moreover, we study the deficiency indices of the underlying non-selfadjoint differential operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lax Operator Hierarchy for the New Fifth Order Integrable System

We consider the Lax representation of the new two-component coupled integrable system recently discovered by the author. Connection of the hierarchy of infinitely many Lax pairs with each other is presented.

متن کامل

J -self-adjointness of a Class of Dirac-type Operators

In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...

متن کامل

A 3 3 Matrix Spectral Problem for Akns Hierarchy and Its Binary Nonlinearization

A three-by-three matrix spectral problem for AKNS soliton hierarchy is proposed and the corresponding Bargmann symmetry constraint involved in Lax pairs and adjoint Lax pairs is discussed. The resulting nonlinearized Lax systems possess classical Hamiltonian structures, in which the nonlinearized spatial system is intimately related to stationary AKNS ows. These nonlin-earized Lax systems also ...

متن کامل

AKNS hierarchy and its binary Nonlinearization

A three-by-three matrix spectral problem for AKNS soliton hierarchy is proposed and the corresponding Bargmann symmetry constraint involved in Lax pairs and adjoint Lax pairs is discussed. The resulting nonlinearized Lax systems possess classical Hamiltonian structures, in which the nonlinearized spatial system is intimately related to stationary AKNS flows. These nonlinearized Lax systems also...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010